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ABSTRACT 

Turechek, W. W., and Mahaffee, W. F. 2004. Spatial pattern analysis of 
hop powdery mildew in the Pacific Northwest: Implications for sampling. 
Phytopathology 94:1116-1128. 

The spatial pattern of hop powdery mildew was characterized using  
3 years of disease incidence data collected in commercial hop yards in the 
Pacific Northwest. Yards were selected randomly from yards with a his-
tory of powdery mildew, and two to five rows were selected for sampling 
within each yard. The proportion of symptomatic leaves out of 10 was 
determined from each of N sampling units in a row. The binomial and the 
beta-binomial frequency distributions were fit to the N sampling units 
observed in each row and to ΣN sampling units observed in each yard. 
Distributional analyses indicated that disease incidence was better 
characterized by the beta-binomial than the binomial distribution in 25 
and 47% of the data sets at the row and yard scales, respectively, 
according to a log-likelihood ratio test. Median values of the beta-bi-
nomial parameter θ, a measure of small-scale aggregation, were near 0 at 
both sampling scales, indicating that disease incidence was close to being 
randomly distributed. The variability in disease incidence among rows 
sampled in the same yard generally increased with mean incidence at the 

yard scale. Spatial autocorrelation analysis, used to measure large-scale 
patterns of aggregation, indicated that disease incidence was not cor-
related between sampling units over several lag distances. Results of a 
covariance analysis showed that heterogeneity of disease incidence was 
not dependent upon cultivar, region, or time of year when sampling was 
conducted. A hierarchical analysis showed that disease incidence at the 
sampling unit scale (proportion of sampling units with one or more 
diseased leaves) increased as a saturation-type curve with respect to inci-
dence at the leaf level and could be described by a binomial function 
modified to account for the effects of heterogeneity through an effective 
sample size. Use of these models permits sampling at the sampling unit 
scale while allowing inferences to be made at the leaf scale. Taken 
together, hop powdery mildew was nearly randomly distributed with no 
discernable foci, suggesting epidemics are initiated from a well-dis-
tributed or readily dispersible overwintering population. Implications for 
sampling are discussed. 

Additional keywords: Humulus lupulus, nested analysis of variance, 
Podosphaera macularis, quantitative epidemiology, Sphaerotheca 
humulus. 

 
Hop (Humulus lupulus L.) is a rhizomous climbing perennial 

plant grown commercially for its harvestable cones. The cones 
are used in the production of beer to provide it with its charac-
teristic aromatic and flavoring properties. In commercial produc-
tion, hop plants are grown on a 3 to 6.4 m high trellis system, de-
pending upon cultivar and region cultivated. Hops are cultivated 
in several countries worldwide with major production in Austra-
lia, Brazil, the Czech Republic, Germany, and the United States. 
In the United States, the commercial hop industry is located in the 
Pacific Northwestern states of Washington, Oregon, and Idaho. 
Local production can be found in a number of other states such as 
California, Maine, New York, Vermont, and Wisconsin that gener-
ally supply hops to local breweries and brew pubs. 

Hop powdery mildew, caused by Podosphaera macularis Braun 
& Takamatus (formerly Sphaerotheca macularis syn. S. humuli), 
is one of the oldest and most serious diseases of hop (26). It has 
long been a major problem in European hop production and was 
partially responsible for pushing the hop industry out of the east-
ern United States and California and into the Pacific Northwest 
(26,33). In June 1997, despite years of quarantine efforts, pow-

dery mildew was discovered in hop yards in Toppenish, WA (28). 
Immediately, the movement of hop plant material across the three 
Pacific Northwest states was restricted to prevent spread of dis-
ease to Oregon and Idaho. Unfortunately, powdery mildew was 
observed in both Oregon and northern and southern Idaho in 1998 
and annually becomes epidemic in all growing regions. 

The disease affects all aboveground parts of the plant; however, 
it is infections of the burrs (the female flower) and immature 
cones (the fruit) that result from secondary cycles of leaf infec-
tions that cause the most appreciable damage and reduction in 
crop yield and value (31). Infected burrs fail to develop into 
cones, and infection of developing cones typically results in 
deformity, discoloration (affecting quality), and/or reduction in 
weight. Leaves are susceptible to infection once they unfurl until 
they reach maturity, approximately 2 weeks after emergence (38) 
or earlier when exposed to supra-optimal temperature (25). The 
optimum temperature for foliar infection and disease develop-
ment is approximately 18°C and the risk of infection decreases 
substantially once the temperature exceeds 30°C; however, infec-
tions can occur at temperatures as high as 36°C as long as expo-
sure is for a short duration and it is followed by temperatures con-
ducive for disease development (25). 

Currently, well-timed fungicide applications are the only effec-
tive means to controlling powdery mildew on susceptible culti-
vars, and growers typically spend from $300 to $600 per hectare 
on fungicide applications to manage the disease. Because hops 
grow continuously from shoot emergence through harvest, the 
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availability of susceptible tissue is not a limiting factor to epi-
demic development. Thus, growers or consultants must make 
management decisions based on the susceptibility of the cultivar, 
weather conditions, and the current level of infection in yards. 
The susceptibility of a cultivar is generally known prior to its 
commercial release and, recently, Mahaffee et al. (24) adapted the 
Gubler-Thomas grape powdery mildew forecaster (10) for hop to 
help growers select an appropriate fungicide schedule. This infor-
mation has helped reduce the number of fungicide applications, 
but there is still economic and environmental need to further 
reduce the amount of fungicides used. 

Despite the progress that has been made in disease manage-
ment, there has been little advancement in our knowledge of the 
epidemiology of the disease in hop yards (26,31). This limits our 
ability to develop novel management practices and test hypothe-
ses that specifically address hop powdery mildew. Spatial pattern 
is one of the fundamental epidemiological characteristics of a dis-
ease (3,20). Dispersal, establishment, growth, competition, and 
survival, for example, are inherently spatial processes (5,18,29, 
40). Although it is generally accepted that process cannot be 
inferred from pattern—the observed pattern at any given time is 
the result of any number of interacting past processes—it is 
widely believed that the observed pattern is a powerful tool for 
generating testable hypotheses (5). Moreover, knowledge of the 
spatial pattern of disease can be used explicitly in the design of 
sampling plans (2,34) assessment of crop loss (9,12,22), the 
analysis of designed experiments (7,14,23) and could be useful in 
the development of economical management practices and risk 
analysis (24). 

There are many different approaches for characterizing the spa-
tial pattern of disease. For disease incidence data, characterizing 
the frequency distribution of the proportion of diseased individu-
als per sampling unit is one widely used approach (4,6,20,32). 
Distributional analyses, as these are often referred to, provide a 
direct measurement of heterogeneity of disease incidence at the 
scale of the sampling unit. Distributional analyses do not require 
knowledge of the spatial location of the sampling units, only the 
number of diseased individuals within each sampling unit. The 
binary power law (13) is an extension of the distributional ap-
proach and can be used for the identification of factors that affect 
the heterogeneity of disease incidence. For example, it is un-
known whether there exists any regional, varietal, or temporal 
variation in the spatial distribution of hop powdery mildew. These 
and other factors can be included in a linear model to quantify 
their effects on the heterogeneity of disease incidence (35,36). In 
contrast, correlation-type analyses are useful for characterizing 
the spatial relationship or association among sampling units 
(35,36). These analyses do require the relative location of the 
sampling units to be known and provide complimentary infor-
mation to the distributional analyses. 

Second, Turechek and Madden (37) recently introduced several 
models useful for characterizing the relationship of disease inci-
dence in a spatial hierarchy. Essentially, use of these models per-
mits sampling or the collection of data at one hierarchical scale—
presumably the scale easiest to collect information or one less 
prone to sampling error—and allows one to make inferences 
about the incidence of disease at a more relevant scale (16). It is 
important to make the distinction between the more traditional 
use of the term scale and hierarchical scale; both are used here. 
The traditional use refers to a distinctive relative size such as the 
dimension of a sampling unit (e.g., 1 versus 4-m2 sampling unit). 
Hierarchical scale refers to a series of scales or levels where each 
level of the series is a subset of the level above it. Hierarchical 
scales can be artificial, e.g., a yard can be divided into a grid of  
1-m2 quadrats and levels above are the result of combining quad-
rats, or they can be natural, e.g., leaves represent the lowest level, 
whereas the branch the leaves are attached to, the tree the branch 
is attached to, the orchards the tree is located in, etc., represent 

successively higher levels of the hierarchy. The ability to make 
inferences from a scale that can be efficiently sampled to a scale 
more relevant for decision-making increases our disease manage-
ment abilities. 

The objectives of this research were to (i) characterize the spa-
tial pattern (i.e., incidence and heterogeneity) of hop powdery 
mildew on foliage in hop yards in the Pacific Northwest and iden-
tify factors that impact spatial heterogeneity; and (ii) characterize 
the hierarchical relationship of hop powdery mildew between the 
leaf and sampling unit scales using recently introduced statistical 
models (37). The overall aim is to provide the information 
necessary to determine at which spatial and/or hierarchical scale 
sampling should be conducted to obtain a precise estimate of 
disease incidence, and whether the sampling strategy should be 
altered relative to cultivar, location, or time of year the sampling 
is conducted. Practically, an increased understanding of the spatial 
distribution of hop powdery mildew would further our ability to 
develop rational disease management practices and cost-effective 
sampling procedures for research and routine scouting. 

MATERIALS AND METHODS 

Between 1999 and 2001, epidemics of powdery mildew were 
monitored in hop yards in Washington and Oregon selected from 
yards with a history of the disease. In Washington, yards from 
each of the major hop growing regions within the Yakima Valley 
were selected. From east to west, the regions are named based on 
the town central to the region; Prosser, Mabton, Moxee, and the 
Yakima Indian Reservation (Reservation). In Oregon, farms were 
located in towns of Mt. Angel, Silverton, St. Paul, and Woodburn. 
These regions span the geographical distribution of hop produc-
tion in Oregon and Washington. 

Hop yards were generally very large for horticultural crops, in 
which single yards ranged from 8 to 32 ha and consisted of 20 to 
180 rows. The yards ranged in age from 3 to 37 years. The major-
ity of yards sampled were planted with 1 m spacing between hills 
and 4.25 m spacing between rows, although some yards were 
planted at 2.13 by 2.13 m spacing. Yards were drip-, furrow-, or 
sprinkler-irrigated, with the majority being drip-irrigated. Yards 
were planted to a single cultivar and most sampling was con-
ducted in yards planted with cvs. Columbus, Tomahawk, or Zeus 
(genetically indistinguishable, thus collectively called CTZ) in 
Washington; and cvs. Willamette, Cascade, Nugget, Galena, and 
Perle in Oregon. CTZ are very susceptible to the strains of pow-
dery mildew present in the Pacific Northwest, Galena and Perle 
are moderately susceptible, Cascade is moderately resistant, and 
Nugget is considered resistant. Willamette is moderately resistant 
when grown in Washington and southern Idaho while highly sus-
ceptible in Oregon. This difference is due to the plants response 
to environmental conditions and not due to different pathogen 
races in the regions (W. F. Mahaffee, unpublished data). 

Data collection. Foliar symptoms were assessed every 3 to  
4 weeks in each yard beginning in May and continuing through 
harvest in late August or September. In 1999, a single transect, 
herein referred to as a row, was sampled from each yard. In 2000, 
each yard was partitioned into H strata, where H = (number of 
rows in a yard)/20 [rounded up to the nearest integer]. A single 
number, r, between 1 and 20 was randomly chosen and the rth  
row from each stratum was sampled as described below. The 
partitioning of yards into strata permitted us to evaluate the vari-
ability among rows within individual yards and was done to 
determine if the results obtained from a single-row sample was 
representative of the disease status of the entire yard. In 2001, 
row selection was modified such that the first 40 rows from the 
north or eastern side of each yard (depending upon its orientation) 
were divided into 2 strata of 20 rows, and a single row within 
each stratum was randomly selected at each sampling date and 
sampled as in 2000. This was done to standardize the sampling 



1118 PHYTOPATHOLOGY 

strategy across yards, and permitted us to include more yards in 
the survey in 2001. 

Each yard was sampled multiple times over the course of the 
season, but transects were chosen randomly on each sampling 
date. In 1999, 44 transects from 14 yards were sampled (2 from 
OR, 12 from WA); in 2000, 370 transects were sampled from 42 
yards (15 from OR, 27 from WA); and in 2001, 164 transects 
were sampled from 54 yards (20 from OR, 34 from WA). All 
yards sampled in 1999 were included in the 2000 sampling; all 
yards sampled in 2000 were included in the 2001 sampling. 

The selection of sampling units within rows was identical each 
year. In each row, n = 10 leaves were arbitrarily selected from 
each plant within the row or from the first N = 100 (in 1999) or N 
= 75 plants (in 2000 and 2001), whichever came first, and each 
leaf was rated for the presence or absence of powdery mildew. 
This is called cluster sampling (15) where each of N clusters (i.e., 
sampling units) contains n leaves. Thus, nN leaves were collected 
from each row and nΣNH leaves were collected from each yard, 
where NH is the number of sampling units in the rth row in the Hth 
stratum, where H = 1 in 1999, H = 2 in 2001, and H was variable 
in 2000. 

Distributional analyses. The binomial and beta-binomial fre-
quency distributions were used to characterize the spatial pattern 
of disease incidence (20). The binomial distribution has a single 
parameter, π, representing the probability of disease; in this case, 
the probability of having 0,1,2,...,10 diseased leaves in a sampling 
unit of n = 10 leaves. The beta-binomial has two parameters, p, 
which is the expected probability of disease, and θ, a measure of 
the variation, or heterogeneity, in disease incidence among sam-
pling units above what would be expected from a good fit to the 
binomial distribution (i.e., θ = 0). A good fit to the binomial 
distribution is an indication of a random spatial pattern of disease 
incidence while a good fit to the beta-binomial is indicative of an 
aggregated pattern. 

The binomial and beta-binomial distributions were fit to the ob-
served frequency data using the program BBD (19) for (i) the N 
sampling units observed in each individual row, herein referred to 
as “row-level analysis”; and (ii) the ΣNH sampling units observed 
in each yard, herein referred to as “yard-level analysis”. An esti-
mate of disease incidence (= p̂ ) for a single row was obtained us-
ing Σx/nN; an estimate of disease incidence for a single yard 
(= yp̂ ) was obtained using Σx/nΣNH, where x is the number of dis-
eased leaves in a single sampling unit of size n summed across all 
sampling units in a row or a yard for row- and yard-level 
analyses, respectively. The y subscript refers to measurements or 
parameters taken at the yard scale. The heterogeneity parameters, 
θ and θy, were obtained using the method of maximum likelihood 
as described in Madden and Hughes (19); these were also 
calculated with BBD. When it was not possible to obtain 
maximum likelihood estimates of the binomial or beta-binomial 
parameters, the moment estimates were used in all subsequent 
calculations (20). 

Chi-square goodness-of-fit tests were calculated for each distri-
bution after disease incidence classes (i.e., 0 to 10 diseased leaves) 
were pooled so expected frequencies in each class exceeded five. 
Because a goodness-of-fit test cannot be performed when the 
number of incidence classes is equal to or is less than the degrees 
of freedom for the test, a log-likelihood ratio test statistic was also 
calculated to test whether the beta-binomial distribution fit the 
data better than the binomial distribution (34). Additionally, the 
C(α) test was used to test specifically whether heterogeneity 
could be described by the beta-binomial distribution. 

The degree of aggregation was estimated using the θ parameter 
of the beta-binomial distribution and the index of dispersion, D 
(20). When the distribution of disease incidence is random, θ = 0 
and D = 1; when disease incidence is aggregated, the observed 
variance is greater than the expected binomial variance making  
θ > 0 and D > 1. 

Power law analyses. The binary power law was expressed as 
the relationship between the observed sample variance of dis-
eased leaves (vobs) and the theoretical variance of the binomial 
distribution [ )ˆ1(ˆbin ppnv −= ], 

)]ˆ1(ˆln[)ln()ln( obs ppnbAv x −+=  (1) 

where ln(Ax) and b are the intercept and slope of a straight line, 
respectively, and p̂  is the moment estimate of p from either the 
binomial or beta-binomial distribution. When Ax = 1 and b = 1, 
diseased leaves have a random spatial pattern that can be de-
scribed by the binomial distribution. When b = 1 and Ax > 1, dis-
eased leaves have an aggregated distribution but the degree of ag-
gregation does not depend on p. When b and Ax are both greater 
than 1, the degree of aggregation or heterogeneity changes 
systematically with p. If the data can be described by the beta-
binomial distribution, then there is a direct mathematical relation-
ship between θ of the beta-binomial distribution and the param-
eters of the binary power law: 

θ = [a – f(p)/n]/[f(p) – a] (2) 

where f(p) = [p(1 – p)]1–b and a = Axnb–2 (20,35). Equation 2 
represents a curve with maximum value at p = 0.5 when b > 1, 
and a horizontal line when b = 1. The relationship between θ and 
p is important for characterizing the spatial process and for sam-
pling where estimates of θ are needed to develop fixed and 
sequential sampling plans (34,36). 

Covariance analysis. A covariance analysis was performed to 
determine the effect of the factors year (first, second, and third 
year), region (Oregon, Prosser, Mabton, Reservation, and Moxee), 
assessment date (categorized by month), and cultivar (CTZ, Wil-
lamette, Perle, and the remainder in the final grouping) on the 
slope (b) and intercept [ln(Ax)] of the power law (equation 1). A 
covariance analysis was done for each year separately, and then a 
separate covariance analysis was conducted to determine if year 
affected estimates of ln(Ax) or b. 

To perform the analysis, the power law model (equation 1) was 
considered the null model and factors were added individually, 
first as an intercept term, then as an interaction term with the 
slope. A factor was considered significant if the new model had a 
deviance significantly lower than the original power law model. 
The test of a factor is not an indication of whether the factor had 
an influence on disease incidence or heterogeneity, but whether 
the factor affected the degree of heterogeneity after first correct-
ing for the relationship between heterogeneity and vran (35). The 
covariance analysis was performed using GLIM (Generalized 
Linear Interactive Modeling, version 3.77, Royal Statistical Soci-
ety, Oxford). 

Autocorrelation analysis. First- and second-order autocorrela-
tion coefficients were calculated for each individual row to deter-
mine the degree of correlation between neighboring sampling 
units (35). Data were transformed using the logit transformation, 
ln[y/(1 – y)], where y = (x + 0.5)/(n + 1) is the Haldane trans-
formation of x, and x is the number of diseased leaflets in each 
sampling unit. Autocorrelation coefficients were not calculated at 
the yard level because the spatial proximity of sampling units in 
different rows was not calculated. 

Incidence of sampling units. The zero term [Pr(0)] and  
mean (p or py) of the probability distribution of diseased leaves 
was used to estimate the proportion of diseased sampling units  
in a row (psu) or a yard (py,su) (37). If Pr(0) represents the prob-
ability that all leaves in a sampling unit were disease-free, then  
psu = 1 – Pr(0) represents the probability that at least one leaf was 
diseased. For simplicity in presentation, we will refer only to  
the relationship at the row level. Derivation at the yard scale 
follows exactly except that yard-level statistics replace row-level 
statistics. 
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If the incidence of diseased leaves can be described by a bino-
mial distribution, then 

n
su pp )ˆ1(1~ −−=  (3) 

A tilde (~) is used to denote that the estimate of psu was derived from 
measurements at another spatial scale. If incidence of diseased 
leaves can be described by the beta-binomial distribution, then 

∏
−

= θ+
θ+−
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1

0 ˆ1
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1~ n

j
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j

jp
p  (4) 

where θ̂  is described by equation 2. Equation 4 is difficult to re-
arrange to allow prediction of p from psu. However, equation 3 can 
be modified to (empirically) correct for the effect of heterogene-
ity or, in some cases, serve as an approximation to equation 4. 
One approach is to follow Rao and Scott (30) and replace n in 
equation 3 with an “effective sample size”. The effective sample 
size represents the reduction in information obtained in the sam-
ple due to the effects of heterogeneity. There are several ways to 
derive an effective sample size; three were considered here. The 
first, and most common, effective sample size was derived by 
dividing n by the index of dispersion (D) (17), 

DnnD /=  (5) 

Since there were several data sets, the average value of D was 
used. Doing this, however, relies on the assumption that D is not 
systematically related to p. Since b > 1 in the binary power law 
(equation 1), indicating that D is systematically related to p, a 
second effective sample size based on the parameters of the 
power law was derived using 

apfn ˆ/)ˆ(=δ  (6) 

where )ˆ(pf and â  are defined above. Madden and Hughes (21) 
developed an iterative and graphic method to derive an effective 
sample size for data that are beta-binomially distributed. This 
third effective sample size was calculated using 

)ˆ08475.0ˆ3471.0ˆ30387.0

004958.0ˆ8179.098135.0/(
22 nn

nnn

θ−θ−θ

++θ+=ν  (7) 

where θ̂  is the heterogeneity parameter of the beta-binomial dis-
tribution estimated using the method of maximum likelihood or 
with equation 2 as described previously. 

To determine which of these effective sample size models was 
the best substitute for n in equation 3 to describe the relationship 
between p̂  and ,ˆ sup  a generalized linear modeling approach, as 
described by Farrington (8) and Turechek and Madden (37), was 
taken. A brief explanation of the approach is given in the Appendix. 

Estimation of variance components. A fully nested analysis 
of variance (ANOVA) was used to estimate the variance compo-

nents at each scale of sampling for the incidence of powdery mil-
dew (2). The analysis was conducted such that sampling units 
were nested within rows, rows were nested within yards, and 
yards were nested within region. The analysis was performed 
only with data collected in 2000 because these represented the 
yards that were sampled most intensively. Data were transformed 
using the arcsine-square root transformation of p, prior to the 
analysis. 

RESULTS 

Distributional analyses. Row level. Disease incidence varied 
by year and location (Table 1). Over the 3 years of the study and 
across all regions, the distribution of disease incidence was posi-
tively skewed with values ranging from 0.00 to 0.77 and a median 
of 0.012 (Fig. 1A). For all 3 years of the study, disease incidence 
was highest in yards located in the Reservation and lowest in 
yards located in Oregon. The heterogeneity parameter of the beta-
binomial distribution ( θ̂ ) ranged from 0.00 to 0.76 with a median 
of 0.006, indicating a low degree of aggregation (Fig. 1C). As ex-
pected based on equation 2, θ̂  was slightly higher for yards lo-
cated in the Reservation, where p̂  was highest, and lowest for 
yards located in Oregon (Table 2; Fig. 2A). However, median val-
ues of θ̂  were higher than expected in the highest incidence class, 
where values are expected to decrease after achieving a maximum 
at p̂  = 0.5 according to equation 2. 

Maximum likelihood estimation of the beta-binomial parame-
ters was possible for 300 (52%) data sets at the row level (Table 
3). For the 278 cases where maximum likelihood estimation was 
not possible, the moment estimates of p̂  were <0.056—the maxi-
mum p̂  of the 278 cases—or the moment estimate of θ̂  was 0. 
Of the 300 data sets where maximum likelihood estimation of θ̂  
was possible, θ̂  was significantly greater than 0 in 74 (25%) data 
sets. The index of dispersion, D, ranged from 0.4 to 4.94 with 
mean 1.25 and median 1.07 (Fig. 1E). D was significantly greater 
than 1 in 33% of the data sets according to a chi-square test. 
Similarly, the C(α) test indicated that the beta-binomial distribu-
tion fit the data in 35% of the data sets. 

The beta-binomial distribution fit the data better than the bino-
mial distribution in 25% of the 578 data sets according to a log 
likelihood ratio test; as incidence increased, the data were more 
likely to be described by the beta-binomial distribution (Table 3). 
Where there were sufficient numbers of classes to allow the chi-
square goodness-of-fit test to be performed, 107/121 could be de-
scribed by the beta-binomial distribution and 84/164 could be de-
scribed by the binomial distribution; 55 of these data sets could 
be described by both distributions. (More data sets could be tested 
for fit to the binomial distribution because one less degree of free-
dom was needed to perform the test.) 

Yard level. Similar to values collected at the row level, disease 
incidence was positively skewed with values ranging from  
0.0004 to 0.71 with median 0.009 over the 3 years of the study 

TABLE 1. Mean and standard error (SE) of the mean of the incidence of hop powdery mildew ( p̂ ) in hop yards located in Washington and Oregon in 1999, 
2000, and 2001 

Oregon Prosser Mabton Reservation Moxee Combined 
Date and 
scalea p̂  (SE p̂ ) T b p̂  (SE p̂ ) T p̂  (SE p̂ ) T p̂  (SE p̂ ) T p̂  (SE p̂ ) T p̂  (SE p̂ ) T 

1999 row 0.10 (0.048) 7 0.180 (0.050) 14 0.08 (0.030) 18 0.49 (0.074) 5 – – 0.16 (0.029) 44 
1999 yard – – – – – – – – – – – – 
2000 row 0.01 (0.001) 157 0.006 (0.001) 53 0.03 (0.006) 50 0.12 (0.018) 77 0.09 (0.023) 33 0.05 (0.005) 370 
2000 yard 0.01 (0.002) 38 0.004 (0.001) 22 0.03 (0.008) 19 0.12 (0.035) 20 0.06 (0.026) 20 0.04 (0.008) 119 
2001 row 0.02 (0.003) 61 0.007 (0.003) 4 0.13 (0.026) 20 0.15 (0.022) 54 0.09 (0.021) 25 0.08 (0.010) 164 
2001 yard 0.01 (0.003) 35 0.007 (0.004) 2 0.12 (0.037) 10 0.15 (0.044) 19 0.08 (0.027) 13 0.07 (0.014) 79 
All row 0.02 (0.002) 225 0.040 (0.013) 71 0.07 (0.010) 88 0.15 (0.015) 136 0.09 (0.016) 58 0.07 (0.005) 578 
All yard 0.01 (0.002) 73 0.004 (0.001) 24 0.06 (0.019) 29 0.14 (0.028) 39 0.07 (0.019) 33 0.05 (0.008) 198 

a Year of sampling and scale of assessment. 
b Number of data sets. 
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and across all regions (Table 1; Fig. 1B). The heterogeneity 
parameter, yθ̂ , was also positively skewed with values ranging 
from 0.00 to 0.31 and a median value of 0.022, indicating a low 
degree of aggregation (Table 1; Fig. 1D). Similar to row-level 
data, yθ̂  increased with yp̂  as expected according to equation 2, 
but again, values of yθ̂  were highly variable and, on average, 
slightly higher than expected at higher levels of incidence (Fig. 

2B). Note, however, that most incidence values were below 0.5 
and that the maximum value of incidence was 0.71, thus pro-
viding little data to “fill” the upper portion of the prediction curve 
(equation 2). 

Maximum likelihood estimation was possible for 124 (63%) 
data sets at the yard level (Table 3). For the 73 cases where maxi-
mum likelihood estimation was not possible, the moment esti-

 

Fig. 1. Frequency distributions of the estimated beta-binomial parameters p̂  and θ̂ , and the index of dispersion (D) for incidence of hop powdery mildew on 
leaves for data collected at the A, C, and E, row level or B, D, and F, yard level. The frequency distributions are based on 578 assessments at the row level and
198 assessments at the yard level using data collected in Oregon and Washington from 1999 to 2001. Vertical dashed lines represent the median value for that 
statistic; medians are given numerically on the graph. 
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mates of yp̂  were either <0.057 or the moment estimate of yθ̂  
was 0. Of the 124 data sets where maximum likelihood estimation 
of yθ̂  was possible, yθ̂  was significantly greater than 0 in 67 
(54%) data sets. The index of dispersion, Dy, ranged from 0.58 to 
2.68 with mean 1.31 and median 1.19 (Fig. 1F). Dy was signifi-
cantly greater than 1 in 53% of the data sets according to a chi-
square test. The C(α) test indicated that the beta-binomial 
distribution fit the data in 56% of the data sets. 

The beta-binomial distribution fit the data better than the 
binomial distribution in 47% of the 198 data sets according to a 
log likelihood ratio test (Table 3). Where there were sufficient 
classes to allow the chi-square goodness-of-fit test to be 
performed, 48/65 could be described by the beta-binomial 
distribution and 8/70 could be described by the binomial 
distribution; three of these data sets could be described by both 
distributions. 

TABLE 2. Mean value of the beta-binomial parameter θ and its standard error (SE) for hop powdery mildew in hop yards located in Washington and Oregon in
1999, 2000, and 2001 

Oregon Prosser Mabton Reservation Moxee Combined 
Date and 
scalea θ̂  (SE θ̂ ) T b θ̂  (SE θ̂ ) T θ̂  (SE θ̂ ) T θ̂  (SE θ̂ ) T θ̂  (SE θ̂ ) T θ̂  (SE θ̂ ) T 

1999 row 0.03 (0.014) 7 0.06 (0.017) 14 0.03 (0.012) 18 0.04 (0.014) 5 – – 0.04 (0.008) 44 
1999 yard – – – – – – – – – – – – 
2000 row 0.02 (0.003) 157 0.01 (0.003) 53 0.02 (0.005) 50 0.02 (0.004) 77 0.02 (0.005) 33 0.02 (0.002) 370 
2000 yard 0.03 (0.005) 38 0.01 (0.003) 22 0.04 (0.006) 19 0.05 (0.013) 20 0.02 (0.006) 20 0.03 (0.003) 119 
2001 row 0.04 (0.013) 61 0.02 (0.013) 4 0.06 (0.008) 20 0.08 (0.012) 54 0.06 (0.015) 25 0.06 (0.007) 164 
2001 yard 0.04 (0.008) 35 0.02 (0.024) 2 0.05 (0.011) 10 0.08 (0.010) 19 0.07 (0.025) 13 0.05 (0.006) 79 
All row 0.02 (0.004) 225 0.02 (0.005) 71 0.03 (0.004) 88 0.05 (0.006) 136 0.04 (0.007) 58 0.03 (0.002) 578 
All yard 0.03 (0.005) 73 0.01 (0.003) 24 0.04 (0.006) 29 0.06 (0.008) 39 0.04 (0.011) 33 0.04 (0.003) 198 

a Year of sampling and scale of assessment. 
b Number of data sets. 

 

Fig. 2. A and B, Relationship between θ̂  of the beta-binomial distribution and disease incidence p̂  and C and D, relationship between the logarithm of the
observed variance and logarithm of the theoretical variance for a binomial distribution, ),ˆ1(ˆ ppn −  for incidence of hop powdery mildew in Oregon and 
Washington from 1999 to 2001. Observed data are shown as open symbols and represent A, single-row or B, yard assessments of hop powdery mildew. Prediction 
curves for θ̂  are based on equation 2. C and D, The solid line represents the least-squares fit to the data with parameters given in Table 4 (1999 to 2001), while
the broken line represents the binomial line ).0ˆ( =θ  A and C are based on 578 assessments at the row level, B and D are based on 198 assessments at the 
yard level. 
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Power law. The binary power law provided an excellent fit to 
the data for each of the 3 years of the survey for both row-level 
and yard-level analyses (Table 4; Fig. 2C and D). Estimated 
slopes and intercept parameters were significantly greater than 0 
and 1 according to a t test, respectively, indicating that hetero-
geneity (i.e., θ̂ ) changed systematically with disease incidence at 
both scales. The covariance analysis indicated that the factors 
year, region, assessment date, and cultivar had no effect on the 
parameter estimates for either row- or yard-level analyses when 
model comparisons were based on their deviances (residual sum 

of squares) (Table 5). Consequently, the data were combined and 
the power law parameters re-estimated for the 3 years of row-
level data and the 2 years of yard-level data. The new slope and 
intercept parameters for either of the combined data sets were not 
significantly different from their corresponding parameter esti-
mates calculated for the individual years. Sequential F tests indi-
cated that the factor year had a significant effect when included as 
an intercept term in the row-level analyses; that is, adjusting for 
year affected the height of the line of the power law (Table 5). Re-
gion also had a marginally significant effect on the intercept at the 

TABLE 5. Deviances (Dev.) and sequential F tests for the covariance models testing for the effects of the factors year, season, region, cultivar, and yard on the 
intercept and slope parameters of the binary power law (equation 1) for hop powdery mildew in hop yards located in Washington and Oregon in 1999, 2000, and
2001 

    Interceptb Slopeb 

  df1
a df2

a Dev. Diff c F d P Dev. Diff F P 

Row-level  Power law 576  30.852 – – – 30.852 – – – 
 +Year 574 2 29.794 1.058 10.19 0.000 30.743 0.109 1.018 0.362 
 +Season 573 3 30.795 0.057 0.354 0.787 30.845 0.007 0.043 0.988 
 +Region 572 4 30.714 0.138 0.643 0.632 30.814 0.038 0.176 0.951 
 +Cultivar 573 3 30.767 0.085 0.528 0.663 30.830 0.022 0.136 0.938 
 +Yard 524 52 27.765 3.087 1.120 0.269 28.786 2.066 0.723 0.926 

Yard-level  Power law 196  7.8779 – – – 7.8779 – – – 
 +Year 195 1 7.7400 0.1379 3.474 0.064 7.8255 0.0524 1.306 0.255 
 +Season 194 2 7.8527 0.0252 0.311 0.733 7.8528 0.0251 0.310 0.734 
 +Region 192 4 7.4975 0.3804 2.435 0.049 7.5635 0.3144 1.995 0.097 
 +Cultivar 193 3 7.6235 0.2544 2.147 0.096 7.6476 0.2303 1.937 0.125 
 +Yard 148 48 6.1107 1.7672 0.892 0.671 6.1758 1.7021 0.850 0.739 

a df1 = degrees of freedom for the model deviance; df2 = degrees of freedom for the factor in test.  
b ln(Ax) and b are the intercept and slope parameters, respectively, of the binary power law (equation 1). 
c The difference between the deviance for the power law model and the power law model with the factor included as either an intercept term or as an interaction

with the slope term. If the deviance was reduced by 2
df2
χ , the factor was considered to improve the model significantly. 

d The F test is a test of a factors significance based on its sequential sum of squares. The significance of a factor under this test is not an indication that the factor
improves the overall fit to the model and, consequently, does not serve as a basis for inclusion in the final model. 

TABLE 3. Results of spatial analyses characterizing the degree of aggregation of disease incidence of hop powdery mildew in Washington and Oregon in 1999, 
2000, and 2001 

 Row Yard 
   Median values    Median values 

Incidence 
classa T b MLEc LRSd De θ̂ f

 r1
g

 T MLE LRS Dy θ̂ y 

0.00–0.05 419 36.5 11.5 1.00 0.000 –0.020 152 52.6 32.9 1.09 0.009 
0.05–0.10 47 91.5 64.4 1.44 0.049 0.068 17 94.1 94.1 1.58 0.068 
0.10–0.20 53 90.5 64.1 1.46 0.052 0.181 13 92.3 92.3 1.63 0.074 
0.20–0.40 40 92.5 42.1 1.32 0.035 0.106 12 100 91.7 1.69 0.083 
0.40–0.60 15 100 73.3 1.62 0.072 0.155 3 100 100 1.85 0.101 
0.60–0.80 4 100 100 2.11 0.136 0.038 1 100 100 2.12 0.140 

a Classes end with the listed incidence value and begin with the first value above the listed value in each class. 
b Number of data sets in defined incidence class. 
c Percentage of data sets in which the maximum likelihood estimation (MLE) procedure converged to provide estimates of the beta-binomial parameters p and θ

(19). 
d Percentage of data sets in which the beta-binomial distribution fit the data better than the binomial distribution according to the likelihood ratio test. 
e Median index of dispersion. 
f Median estimated beta-binomial parameter. 
g Median first-order autocorrelation statistic. 

TABLE 4. Estimated parameters of the binary power law (equation 1) and their standard errors (SE) for hop powdery mildew in hop yards located in Washington
and Oregon in 1999, 2000, and 2001a 

     Year df r2 ln(Ax) SE ln(Ax) b SE b 

Row-level analysis 1999 43 98.6 0.341 0.037 1.104 0.020 
 2000 369 98.5 0.266 0.019 1.063 0.007 
 2001 163 97.7 0.458 0.030 1.112 0.013 
 1999–2001 577 98.3 0.350 0.015 1.088 0.006 
Yard-level analysis 2000 118 99.3 0.417 0.027 1.092 0.009 
 2001 78 98.2 0.490 0.041 1.100 0.017 
 2000–2001 197 98.9 0.457 0.023 1.099 0.008 

a ln(Ax) and b are the intercept and slope estimates, respectively, of the binary power law (equation 1). 
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yard-level. However, the inclusion of year or region in the power 
law model did not reduce the deviance significantly relative to the 
power law model (i.e., the null model). 

Autocorrelation analysis. First-order autocorrelation statistics 
( 1̂r ) were slightly skewed, with values ranging from –0.28 to 0.73 
with a mean value of 0.053 and a median of –0.013. For the  
3 years of data, 19.7% of the data sets had significant positive 
first-order correlations and only 3.6% of the data sets had signifi-
cant second-order correlations ( 2̂r ) based on the values exceeding 
the upper bound of their approximate 95% 1-sided confidence 
interval (calculated using 1.645/√N). The results indicate a low 
degree of spatial correlation among neighboring plants. First-
order correlations were not systematically related with incidence 
at either the row or sampling unit level (Table 3). 

Incidence of sampling units. Figure 3A and B show the 
hierarchical relationship between incidence of diseased leaves ( p̂  
or yp̂ ) and incidence of diseased sampling units ( sup̂  or ysup ,ˆ ) for 
data collected at row and yard levels, respectively (16,37). The 
curves shown are the binomial model (case i, solid line), the beta-
binomial model (case ii, broken line), effective sample size model 
based on the power law parameters (case iii, dash-dot line) and 
effective sample size model based on Madden and Hughes (21) 
(case iv, dash-dot-dot line), and the best fitting model with slope 
and intercept parameters estimated (case v, dotted line). No pa-
rameter estimation was necessary for i thru iv cases. 

The binomial model provided the worst fit to both the row- and 
yard-level data (Table 6). Applying any correction for heterogene-
ity to the binomial model improved the fit to the data. Of the 
models that did not involve curve fitting, the effective sample size 
model based on Madden and Hughes (21) gave the best fit to the 
row-level data. The beta-binomial model provided the best fit to 
the yard-level data. The effective sample size model based on 
Madden and Hughes (21) closely approximated the beta-binomial 
model as expected. The best-fitting model, by definition, was ob-
tained by fitting both the intercept and slope parameters via 
regression. These results were very similar to those obtained with 
strawberry leaf blight (37). 

Estimation of variance components. ANOVA results indi-
cated that the largest component of variation in incidence was 
attributed to variability among yards followed by sampling units, 
region, and then row (Table 7). Approximately 30% of the total 
variation in incidence could be explained by the variability among 
sampling units within rows. Relative to the variation among rows, 
this accounts for nearly 80% of the variation within a yard. De-
spite the magnitude of difference, the variation among rows 
within yards must be taken into account to minimize sampling er-
ror. Approximately 18% of the variation could be attributed to re-
gional effects; this is seen in Figure 4 where the range of inci-
dence values for single rows sampled in individual yards at the 
leaf (Fig. 4A) and sampling unit (Fig. 4C) scales are shown for 
yards sampled in 2000. (Eleven additional yards are represented 
in Figure 4 that are not listed in Tables 1 to 3 because yards with 
no powdery mildew are included). The overall higher incidence in 
the Reservation and Moxee regions is likely attributed to the den-
sity to which hops is planted in these regions, the fact that the 
Reservation was the region where the first epidemics were re-
corded, and less likely to regional variation in climate. 

In contrast to incidence, values of θ̂  were more variable within 
and among yards (Fig. 4B). This variability did not appear to be 
related to region or to incidence, supporting results of the covari-
ance analysis. 

Sampling a yard. The information in Figure 4 was used to 
calculate the probability of incorrrectly concluding that the 
incidence of powdery mildew is less than an arbitrary incidence 
threshold relative to the number of rows sampled in a yard. 
Consider a threshold of p = 0.10, represented by the broken line 
in Figure 4A; the broken line in Figure 4B is the corresponding 
value of psu estimated using equation A2 with the intercept and 

slope parameters estimated using the best-fitting model, i.e., case 
v. In the context of sampling, we impose the rule that if any row 
sampled in a yard exceeds the threshold value, then an “action” is 
warranted. If the decision to act were to be based on sampling a 
single row, then over the 130 data sets, there are eight yards 
where the decision to act could have gone either way. That is, 
there are eight yards where individual rows had incidence values 
above and below the threshold value. Sampling two rows reduces 
the chances of reaching an incorrect decision to only three yards. 
If we sampled three rows, then all yards would have been classi-
fied correctly based on the rules developed. The same conclusions 
are reached irrespective of whether incidence was rated at the leaf 
level or sampling unit level for this threshold. 

Fig. 3. Relationship between incidence of hop powdery mildew at the leaf and 
sampling unit scales for data collected at the A, row or B, yard level. Ob-
served data are shown as open symbols and represent A, single-row or B, 
yard assessments of hop powdery mildew. Case i was derived by assuming
that incidence could be described by the binomial distribution at the leaf scale
(equation 3). Case ii was derived by assuming that incidence could be
described by the beta-binomial distribution at the leaf scale (equation 4). Case 
iii was derived by assuming that incidence could be described by the beta-
binomial distribution but that heterogeneity varies systematically with p
according to the binary power law (equation A1 with δ• = nn ). Binary power 
law parameters are given in Table 4 (1999 to 2001). Case iv was derived by
assuming that incidence could be described by the beta-binomial distribution 
but with heterogeneity varying according to the effective sample size of
Madden and Hughes (21) (equation A1 with )ν• = nn . Case v was derived 
assuming that heterogeneity varied according to the power law with param-
eters estimated by fitting equation A2. Analyses are based on 578 assessments
at the row level and on 198 assessments at the yard level for data collected 
between 1999 and 2001. 
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This process was repeated for threshold values of 0.005, 0.01, 
0.05, 0.1, 0.2, 0.3, 0.5, and 0.75 for leaf sampling and the corre-
sponding values at the sampling unit scale were calculated as de-
scribed above (Fig. 5). The probability of making an incorrect de-
cision is greatest at low threshold values and when few rows are 
sampled in a yard. The error probability decreased more rapidly 
at the leaf level than at the sampling unit level, particularly when 
decisions were based on sampling one or two rows. The error 
probability can be kept below 5% at the leaflet and sampling unit 
scales when threshold values are 0.05 or greater and a minimum 
of three rows were sampled, and below 10% when threshold 
values are 0.1 or greater and a minimum of two rows were sam-
pled. Interpreting Figure 5 must be done carefully because as the 
number of rows sampled in a yard increases so does the chance 
that a yard will be “fully” sampled. Since the “true” estimate of 
disease incidence in a yard is the mean incidence of the rows 
sampled in the yard, an incorrect decision is technically impossi-
ble once the yard is fully sampled under the current sampling 
plan. The proportion of yards that were fully sampled using the 
sampling plan described previously were 0.015, 0.18, 0.52, 0.75, 
and 0.83 for one, two, three, four, and five rows sampled, respec-
tively. 

DISCUSSION 

Incidence and heterogeneity of hop powdery mildew were 
characterized using data collected from single-row assessments 
and multiple-row or yard-level assessments; row-level analyses 
represented smaller scale assessments of the spatial pattern than 
yard-level assessments. Distributional and binary power law 
analyses, used to characterize pattern at the scale of the sampling 
unit, showed that disease incidence and heterogeneity of disease 
incidence were characteristic of a near-random disease pattern 
among sampling units collected within a single row. The spatial 

pattern was found to be slightly more aggregated when analyses 
were conducted using information gathered from several rows 
within a single yard (i.e., yard-level analyses). Measures of spa-
tial correlation, used to characterize larger scale patterns (i.e., 
plant-to-plant relationships within rows), indicated a low degree 
of spatial correlation. In instances where significant spatial 
correlation existed, it was typically confined to first-order correla-
tions and there was no apparent relationship between the magni-
tude of the correlation and incidence or heterogeneity. 

From a biological perspective, the data presents little evidence 
to suggest that epidemics begin from a few disease foci within 
yards and, in fact, argues that P. macularis perenniates success-
fully within yards at a significant proportion, despite current man-
agement practices. This is supported by ANOVA, which showed 
that the largest source of variation in disease incidence was 
among yards while the smallest source was among rows, indicat-
ing that incidence among yards was quite variable but within 
yards was relatively (but not entirely) homogenous. A similar 
situation exists in apple. Powdery mildew (P. leucotricha) epi-
demics start from conidia produced on infected primary shoots 
within the orchard (11) and lead to a random distribution of sec-
ondary powdery mildew on leaves (39). Random spatial patterns 
of incidence may be an attribute common to powdery mildews in 
perennial systems, particularly at the scale of the management 
system (i.e., individual yard, field, or orchard).  

There is evidence of aggregation on a regional level. Regional 
effects were identified as a significant source of variation in both 
the covariance analysis and the nested ANOVA. Conceptually, the 
two analyses differ in that the covariance analysis is quantifying a 
factor’s contribution to the extra-binomial variation of disease 
incidence, whereas ANOVA is quantifying a factor’s contribution 
to the overall variation in incidence, i.e., binomial plus extra-
binomial. Regional differences, however, were expected since 
hops is grown in two distinctly different climates in the Pacific 

TABLE 6. Deviances and degrees of freedom (df) for five cases describing the relationship between incidence of hop powdery mildew at the leaf scale, p, and at 
the sampling unit scale, psu, at either the row- or yard-level assessments in hop yards located in Washington and Oregon in 1999, 2000, and 2001 

    Row Yard 

Casea Offsetb Xc Intercept/sloped Dev.e df Dev. df 

i f)ˆCLL()ln( pn +  – –/– 873.3 578 883.5 198 

ii 



















θ+
θ+−

− ∏
−

=

1

0 1

ˆ1
lnln

n

j j

jp
 – –/– 467.5 578 233.0 198 

iii )ˆCLL()ln( pn +δ  – –/– 447.8 578 359.0 198 
iv )ˆCLL()ln( pn +ν  – –/– 398.0 578 250.4 198 
v )ˆCLL(p  )]ˆ1(ˆln[ pp −  –ln(a)/(1 – b) 368.9 576 227.6 196 

a Roman numeral refers to the “case” as described in the Appendix. 
b Refers to terms in the model that are considered known. 
c Independent variable; “–” indicates no independent variable in the model. All terms are offset, therefore no parameters are estimated. 
d Theoretical value of the intercept and slope estimate; “–” indicates no intercept or slope estimated. 
e Calculated deviance. For binomial data, values of the deviance equal to or less than the model degrees of freedom indicate a good fit. When comparing two 

models, if the reduction in deviance is greater than ,2
vχ  where v = df1 – df2 is the absolute difference of the degrees of freedom for competing models, then the

model with the smaller deviance is the better-fitting model. 
f CLL(z) = ln[–ln(1 – z)]; complementary log-log function. 

TABLE 7. Analysis of variance table and variance components for the incidence of hop powdery mildew in hop yards located in Washington and Oregon in 2000 

 
Source of variationa 

 
df 

 
Mean squareb 

 
F 

 
P 

Variance 
componentc 

 
% Total 

Region 4 48.540 10.45 0.000 0.0069 18.80 
Yard 123 4.6466 24.97 0.000 0.0159 43.32 
Row 378 0.1861 16.32 0.000 0.0025 6.81 
Sampling unit 35,375 0.0114 ... ... 0.0114 31.06 
Total 35,800 ... ... ... ... ... 

a Sampling units are nested within rows, rows are nested within yards, and yards are nested within regions. Five regions were considered: Oregon, Moxee,
Reservation, Mabton, and Prosser. The latter four are located in the state of Washington. 

b The mean squares for each source of variation are estimates of the following terms: MSSU = s2; MSrow = s2 + 70.52 2
rows ; MSyard = s2 + 71.99 2

rows + 
280.25 2

yards ; and MSregion = s2 + 74.07 2
rows  + 270.32 2

yards  + 6243.57 .2
regions  

c The variance components are obtained by substituting and rearranging terms accordingly. 
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Northwest. In Washington and southern Idaho, hops is grown in 
an arid climate, with March to June and September generally 
highly conducive to powdery mildew development. In Oregon 
and northern Idaho, the climate is much cooler and receives con- 
siderably more rainfall than Washington and southern Idaho, 
especially in the spring, with late June to September generally 
highly conducive to powdery mildew development. Differences 

within Washington are less likely to be explained by climatic 
variation and more by the spatial proximity and arrangement of 
yards within a region and a region’s location relative to the Reser-
vation (considered the origin of introduction). Alternatively, one 
could speculate that powdery mildew epidemics begin in the 
western-most yards of the Reservation and Moxee (where pow-
dery mildew intensity is generally highest) and that westward 

 

Fig. 4. Range of hop powdery mildew incidence and heterogeneity values for single rows collected in the same yard on a single assessment date. A, Incidence and 
B, heterogeneity were assessed at the leaf level. C, Incidence was assessed at the sampling unit level. The broken line represents an artificial threshold incidence
of 0.10 at the leaf level (corresponding to 0.57 at the sampling unit level). Analyses were conducted with 130 data sets collected in hop yards in Washington and
Oregon in 2000. 
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winds carry conidia toward the east, depositing them randomly 
across yards. This could explain why flag shoots (the presumed 
source of initial inoculum) are difficult to find in yards outside of 
the Reservation that later developed high levels of powdery 
mildew. However, as P. macularis becomes established in a 
greater number of yards in the Yakima Valley, this explanation 
will be less likely and any subsequent differences may be 
attributed to climatic variations (25). 

The yard-level analysis was done essentially to answer the 
question “Is it necessary to sample multiple rows in a yard or will 
single-row estimates of incidence provide the data necessary to 
make management decisions?” Combining the row estimates led 
to a distribution of incidence values that was more heterogeneous 
than the individual row estimates. From a mathematical perspec-
tive, this is primarily the result of yard-scale data sets having a 
larger proportion of sampling units with 0 or few diseased leaves 
than row-scale data sets, resulting in a positively skewed distribu-
tion that is not well described by the binomial distribution. Yard-
level estimates of incidences “average in” high incidence values 
and encompass the variability inherent in most yards. Conse-
quently, sampling formulae used to determine the number of sam-

pling units to observe in a yard should use parameters estimated 
from yard-level analyses; these estimates best characterize the 
variability at the management unit of concern. Once the number 
of sampling units to observe has been calculated, sampling should 
proceed over multiple rows in a single yard. Albeit the smallest 
component of variation, the variation among rows in a yard 
should not be ignored. Minimally, the number of sampling units 
observed should be divided among the three rows. 

Moreover, our analyses show that greater emphasis should be 
placed on sampling a larger proportion of yards on any single 
farm; indirectly asserting that the time and effort committed to 
sampling in any one yard should be minimized. Sampling could 
be expedited if the disease status of the sampling unit could be 
assessed more rapidly. This was addressed with the hierarchical 
analysis characterizing the relationship between incidences at the 
leaf and sampling unit scales (37). The good fit to the model(s) 
suggests that characterizing the disease status of a sampling unit 
could replace enumerating the disease status of the 10 individual 
leaves as a practical way of sampling. In so doing, the sampling 
approach is similar. The sampler approaches each plant with the 
intent of sampling 10 leaves, but differs in that once the first dis-
eased leaf is discovered, the sampler moves on to the next sam-
pling unit of 10 leaves. This approach is intended to mimic 
whole-plant sampling and, indeed, assessing the incidence of a 
plant rather than attempting to single out 10 leaves may perform 
similarly (but was not tested). To have developed the scheme us-
ing entire plants would have required us to sample every leaf on a 
hop plant (5.5 m tall by 2 m wide), which is unrealistic. 

Characterizing the disease status of a sampling unit rather than 
the individual leaves comes with the cost of a loss of accuracy. If 
one were to interchange the axes in Figure 3, allowing psu to serve 
as the independent variable and p as the dependent variable, it is 
clear that for any value of psu, particularly at low values of inci-
dence, a relatively large range of p values are possible. The 
practical question is “What sampling procedure minimizes the 
risk of making a management error?” That is, one must weigh 
sampling a greater proportion of yards and obtaining estimates of 
incidence that are less accurate than what could be obtained by 
sampling fewer yards more intensively. Given that a large propor-
tion of the variability can be attributed to yard-to-yard variation, 
and knowing that growers are managing multiple yards at any 
given time, sampling quickly in any single yard so that the total 
number of yards sampled on the farm can be increased is the most 
desirable approach. 

In conclusion, growers and crop specialists often decide based 
on a limited sampling whether or not an action, such as a fungi-
cide application, is necessary. Hop yards are generally large. 
Thus, it is difficult to know without any prior knowledge of the 
spatial structure of disease incidence, how many samples should 
be taken, at what scale measurements of disease should be made, 
and what proportion of the yard samples should be taken so inci-
dence can be estimated with reasonable certainty. The foundation 
for answering these questions was developed in this research. The 
question of how many samples or, practically, what is the mini-
mum sample size needed to make an informed decision can be an-
swered based on the information collected here with the develop-
ment and validation of a sampling plan, but this is beyond the 
scope of this paper and is the focus of future research. Moreover, 
what is a reasonable incidence threshold to build a sampling plan 
around has yet to be addressed; this is perhaps one of the most 
important components in the design of efficient sampling proce-
dures (27) and will be addressed in future research. 

APPENDIX 

Farrington (8) showed that the binomial model (equation 3) can 
be reformulated in a generalized linear model to permit direct 
curve fitting (1), allowing for explicit consideration of the bino-

Fig. 5. Proportion of hop yards classified incorrectly as being under a 
powdery mildew incidence threshold of A, p = 0.005, 0.01, 0.025, 0.05, 0.1,
0.2, 0.3, 0.5, or 0.75 (leaf level) and B, psu = 0.0406, 0.0901, 0.1982, 0.3455, 
0.5624, 0.8177, 0.9265, 0.9933, and 1.0 (sampling unit level) as a function of
the number of rows sampled. The value of psu was calculated using equation
A2 with estimated slope of 1 – b = –0.0816 and intercept –ln(a) = 1.863 as 
described in the text. Analyses were conducted with 130 data sets collected in
hop yards in Washington and Oregon in 2000. 
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mial error structure of sup̂ . If CLL(z) = ln[–ln(1 – z)] is the com-
plementary log-log transformation of z, then equation 3 can be 
rearranged such that 

)ˆCLL()ln()~CLL( pnpsu += •  (A1) 

This is an equation for a straight line with a slope of 1 and inter-
cept of ln( •n ), where •n  is replaced by either n, nD, nδ, or nν, as 
defined previously. As Turechek and Madden (37) indicate, equa-
tion A1 can be viewed as a simple reformulation of equation 3, 
thus requiring no curve fitting to estimate the parameters (because 
they are already known), or it could be viewed as a statistical 
model for CLL( sup~ ):CLL( p̂ ); two of these models were consid-
ered. The first was to assume a known slope of 1 and an unknown 
intercept equivalent to ln( •n ). In this case, ln( •n ) was not neces-
sarily an effective sample size, but a parameter describing the 
CLL( sup~ ):CLL( p̂ ) relationship. For the second model, nδ (equa-
tion 6) was substituted for •n  into equation A1 and, after some 
rearrangement, 

)ˆCLL()]ˆ1(ˆln[)1()ln()~CLL( pppbapsu +−⋅−+−=  (A2) 

To fit this model, CLL( p̂) was subtracted from both sides of 
equation A2, i.e., CLL( p̂ ) is an “offset” variable, )]ˆ1(ˆln[ pp −  
was treated as an independent variable with slope (1 – b) and 
intercept –ln(a). When the parameters a and b were estimated 
through direct curve fitting, their interpretation is similar to, but 
not exactly as in equation 1. 

The deviance, analogous to the residual sum of squares for 
normal-theory regression, was calculated for five candidate 
models; four required no direct curve fitting or parameter esti-
mation, one model did. The four cases requiring no parameter 
estimations were (i) binomial (random) distribution of diseased 
leaves (equation A1 with nn =• ); (ii) beta-binomial model 
(equation 4 formulated as a CLL [see equation 15 in reference 
37]); (iii) effective sample size assuming D varies systematically 
with p according to the binary power law (equation A1 with 

δ• = nn ); and (iv) effective sample size of Madden and Hughes 
(21) with variable heterogeneity (equation A1 with ν• = nn ). The 
model requiring curve fitting, case v, was equation A2 fit as 
described above. 

The statistical package GLIM was used to estimate the devi-
ance. For cases i to v, where no parameters were estimated, the 
GLIM method of Aitkin et al. (1) (page 177 of literature citation 
1) was used to determine the deviances. The five models were 
first fit to the individual row data for the 3 years combined and 
then to the yard data for the 2 years combined. 
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